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ABSTRACT

The determinantal equation for a narrow tape helix is derived

of two methods, and complex-valued solutions for the phase constant

are obtained.

The complete k - B diagram (Brillouin diagram) is given as a

function of tape width and pitch angle. In order that the solutions

be continuous functions of k and B, it is necessary to change branches

of the square root which appears in the determinantal equation. A

discussion of solutions which are physically admissible as complex

wave solutions is given, and the phase constants corresponding to the

complex wave solutions are used to represent the current on a helix.

Two source problems are investigated, one an infinite helix, the other

a finite helix. Comparison with experiments is made with good agreement.
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1. 'I'NTRODUCTION

Analysis for the heli.x was first reported in 1897 by Pocklington who as-

sumed a very thin perfectly conducting wire and formulated an integral equati.on

whose approximate solutions predicted an axial phase velocity equal to the veloc-,

ity of light c for very low frequencies and c sin'P, where q is the pitch angle

of the heli.x, for larger frequencies. These results agree with the results re-

ported in the present work for the limiting cases of very narrow tape and low fre-

quencies.

In 1910 Nicholson2 formulated the helix problem exactly but was forced to

make unreasonable approximations to obtain a solution.

Ollendorf3 in 1926 reported the solution of the sheath helix for the mode in

which no angular variation of the fields exist. Solutions for the higher order

4
modes of the sheath helix were given by Phillips and Malin 4

A more complete analysis which was moi-vated by the use of the helix in

traveling wave tubes and as antennas was given by Kornhauser5 in 1949.

An excellent history and an extensive bibliography through 1955 is given by

6 7
Sensiper who also explains the relationship of his thesis to the total litera-

ture. In these publications he formulated and solved the determinantal equation

for the tape helix for the phase constant B. He limited himself to The real-,

valued solutions of this equation.

Following Sensiper, Pierce and Tien8 obtained an approximate solution of the
,9

determinantal equation of the tape helix using Pierce's coupled mode theory.

Abstracts of 66 papers and reports on the helical beam antenna through May

10
1959 are given by Wong and Thomas

None of the works :referred to above indicated the possibility of the exis-

tence of complex-valued solutions of the helix determinantal equation, In fact,

Sensiper and also Pierce voiced doubts as to the existence of complex-valued
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phase constants, Sensiper's proof on the non-exi.stence of complex solutions was

based on the condition of total finite energy,

The existence of the complex roots and their importance to the helical antenna

11
problem was first pointed out by Mittra " In that paper he also explained as

a consequence of the presence of a particular symme.ry in the helix structure which

makes its effective period to be infinitesimally small. why the determinantal

equation of the helix, unlike 'the equation for other periodic structures, does

not have periodic solutions. As a further consequence of the above geometry it

was shown that there exist no harmonic terms in the representation of The current

along the tape and that a single term of the type e (s = distance along the

tape, Pw = phase constant) is sufficient -to represent this current.

A major contribution of the present work is the detailed study of the deter-

mination and application of 'the complex solutions of the helix determinanral

equation, Except for a brief mention by Mi+tra, a discussion of these solutions

has not been reported elsewhere. The complex valued solutions of 'the helix

equation have been found very useful in explaining the current distribution

on the helix, both uniform and log-periodic and for predicting the radiation

pattern of a helical antenna. A further discussion on 'the interpretation and

usefulness of the complex solutions of the determinantal equation in an open

periodic structure appears later.

An alternative approach 'to the solution for the current distribution on the

helical structure has been reported by Patton 1 He obtained 'the Fourier trans-

form of the current distribution on the semi-infinite bifilar helix by a Wiener-

Hopf technique. The Fourier transform of the current was related to the radi-

ation pattern and the calculated patterns were compared with experimental results f
also obtained by Patton, The effect of wire size was studied,

Three related papers have recently been written by MacLean 13,14,15 In the I
first he compares the different approaches to the helical antenna. The results
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of the report state that a "simple engineering approach" (.e., one without

Bessel Functions) "is adequate for most purposes 0 " The second paper is a

theoretical study assuming that waves travel both axially and helically along

the antenna. It is shown that the existence of ,%he helical 7aves is responsible

for what are the cut off frequencies of the antenna, Study is also made of

the effect of the ground plane. The last is an analysis based on the sheath-

helix mode. He obtains, among other things, the determinantal equation for

the sheath helix with a concentric perfect ly conducting core. The results are

given for relative phase velocity when the fields haie one axial •ariarion,
-in•i

i.e., e , n = 1.

16 17
Kraus in 1948 and later Kornhauser calcu~lated The radiation patt.ern of

a helical antenna operation on the axial or beam mude by assuming a sinusoidal

current with an empirically determined phase constant which corresponded to a

slow wave on the antenna. They obtained satisfactory results by using the em-

pirically determined phase constant which may now be obtained by using the phase

constant determined from the solution to rhe delerminantal equation.

The current distribution on a helical antenna was measured by Ma~rshb'8 and

he was able to fit his measured results well by assuming there existed two waves

on the antenna, one corresponding to a complex-,valued phase constant with tbhe

real part representing a wave traveling at the velocity of light and the other

corresponding to a real valued phase constant, representing a slow wave. His

empirically determined phase constants agree well with the complex-valued phase

constants which are solutions to the determinantal equation.

Now return to a brief discussion of complex solutions. The solutions

corresponding to complex-valued phase constants are not Drope-r modes since the

fields corresponding to these modes do not satisfy the radiation condition

19
everywhere at infinity. However, MaTcuvi tz suggested that, these soluti:ns

might be used. to approximately represent the nea~r fi.elds, and used as an. alt.er-
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nate to the continuous eigen-value spectrum and as an approximate representation

of the far fields of a structure in a certain range of observation poi.nts. The

solutions corresponding to the improper modes were given the name leaky modes by

Marcuvitz who showed that the zero of the determinantal equation which corres-

ponds to the leaky mode is on the improper Riemann sheet in the phase constant.

plane. The far fields may also be calculated by Kirchhoff type integration

by treating the near field representation in terms of the leaky wave fields

as equivalent sources.

Radiation properties of a class of periodic sTrucrures may be conveniently

analyzed in terms of their Brillouin (k- B) diagram provided this diagram

exhibits both real and complex solutions in slow as well as fast wave regiDnso

Early workers on periodic struciures were primArily interested in the surface

wave, (real valued solution to the determinatial equation), on open periodic

structures, and i.t was custonary to name the fast waie regions forbidden regions.

Recently it has been well demonstrated ,.ha, not only do there exist complex-valued

solutions for the phase constant of some structure in the forbidden region where.

r < k but also in the slow wave regions where B r> K. Since leaky waves haverr

become synonymous with fast waves, it is suggested here that th.e name complex

waves be associated with the waves corresponding to complex-valued phase con-

stants in fast or slow wave regions or that the term leaky wave be generalized

to include both slow and fast waves. The pbysical interpreta•ion of complex

waves was given by Marcuvitz 19. Olner 20 gives an excellent discussion on tie

range of permitted observation points and Mhe Position of the complex wave.

zero of 'the determinantal equation. In a class of structures excired by a

given sources where the dominant part, of the field bas its total representation

in terms of the continuous spectrum of spatial frequencies, complex waves

have been found useful in representing the fields. This alternate repre-,
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sentation is approximate.

Goldstone and Oliner21ý22 obtained good results using complex waves

in the analysis of a class of leaky-wave structures, The relationship

between complex waves and the radiation pattern of leaky wave antennas is

23
discussed by Hessel. Oliner also gives other examples of the use of com-

plex waves in electromagnetic phenomena.

To date, very few structures have been analyzed for their complete

Brillouin, (k-B), diagram, other than on an approximate and perturbatlonal

basis. This generalization is excepting some idealized structures such as

the constant reactance or modulated reactance surfaces, the ani.sotropic sheet

structures and a few others, Although the analysis of the above structures

is quite useful, their application to practical devices is good only in an

approximate sense.

The tape helix, which is very much a practLical structure, yielded to

solution for its complete k-B diagram which. with its applications to heli-

cal antennas., is the subject of this report. The determinantal equation for

a narrow tape helix may be formulated in at least two different ways. One

involves the Floquet expanision of the fields and -the assumed current, with

unknown phase constant, on matching boundary conditions at the cylindrical

surface which contains the tape. The second mettod is based on an integral

equation formulated for the current distri.bution on the tape. The second

24
method is similar to the method used by Kogan on the round wire version of

the helix. The same determinantal equation is obtained by both methods, The

determinantal equation and its solutions for the phase constant are ex-

tensively studied for real-valued as well as complex-valued phase constants.

The solutions in the k-B3 plane are continuous. In order that the

solutions be continuous it is necessary to change branches of the square
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root in the argument of the IK product. in determinantal equation. Different

branches give rise to different solutions whi.ch are physically jnterpreted.

The root-tracking procedure on different Riemann sheets which is outlined

here may find applications in the study of other structures where the locus

in the k-B plane appears to be discontinuous.

The complex-valued solutions to the determinantal equation are used in

the analysis of two different source problems. The first source problem

obtains the solution for the relative amplitude of the waves corresponding

to real and complex roots for an infinite helix excited at the center. The

second considers the same problem for a finite helix excited at the center.

A variational principle is used to formulate the latter source problem.

Theoretically computed values of the real and complex solutions are used to

18
explain the experimentally measured current distributions by Marsh . As

previously mentioned, complex wave analysis given in this report may be used

to interpret Marsh's results which were empirical.

It is felt that the current distribution on the tapered version of the

helix, viz., the equiangular spiral on a cone, may also be explained by ex-

tending the present work to tapered structures.

Iw

1
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2. THE DETERMINANTAL EQUATION

2.1 Introduction

In this chapter the determinantal equation for the infinite tape

helix will be derived by two methods. The functions of a complex

variable which appear will be multivalued, and determination of the

appropriate branches will be discussed. The geometry of the tape helix

used is shown in Figure 2.1.

The tape lies in a cylindrical surface whose radius is "a" and whose

axis is the z axis. Perfect conductivity and infinitesimal radial

thinness are assumed; however, the width of the tape is taken as 5 as

measured in the z direction. Points on the surface of the cylinder are

given by the coordinates ý and ý. The azimuthal angle, ý, locates a

point on the center line of the tape as given by the parametric

equations

x = a cos

y = a sin

P
2TT

where p is the pitch of the helix. The coordinate ý is the distance

in the z direction from the point determined on the center line of the

tape by specifying c.

The equation of the tape may then be written as

-CO < < 0

6 <
-- <

2- -- 2
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I
I

x I

I

Figure 2.1. The geometry of t.*he tape hel~ixo.
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2.2 Derivation by Application of Boundary Conditions

The determinantal equation for the tape helix is derived in this

25
section by expanding the fields and current in space harmonics

and then matching boundary conditions at r = a.

The helix shows a great amount of symmetry, If one displaces the

infinite helix a distance p in the z direction, the helix transforms

into itself. The translational period is p. If the helix is rotated

through an angle, ý = 27T, the helix transforms into itself. The

rotational period is 27F. These symmetries are not the only symmetries,

In addition, any arbitrary translation z followed by a rotation ýo where
z

0
=o - transforms the helix into itself. Therefore the period in
0 _ -

z~ z where l , IS Zero. Now if z = z - p and ý is fixed

then ý is periodic with period p. If z is fixed ý is also periodic with

period p. This property, the generalized period being zero, is a unique

property of the helix. Of course, uniform structures have zero translational

period. This unique symmetry property of the helix has important

consequences which will be discussed later.

The field equations used are expressed in circularly cylindrical

coordinates. Starting from the source free Maxwell's equation one

obtains the wave equation for E and H as
Z z

1 3 1 324 a2 1 _2_

- 7r (r +) 2 2 2 - 2 =0 (2.1)
r 4 z 2  c at

where • E or H and is a function of r, 9, z and t.

Z Z

Assuming the time variation as sinusoidal and that Equation (2.1) may
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be separated as

P(r, €, z, t)= R(r) •(,) Z(z) elut

one obtains

d r + d- k R2 2 0 (22)
rdr - dr) - 2

where

d2 -

d - + • = 
(2 °3)

and

d- 2 02 (24)
dz 2

2 2

A soluticn to Equation(2o3)is

A 1 Ae- iný (2.5a)

and, since the fields are periodic in ý with period 27r, n must be an integer,

A solution of Equation(2o4) is

e z
Z =A 1 1e p(2.5b)
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The solution for Equation(2.2)is

R= A nI (Tým B) BKn(T. ) (2.5c)

where

T 
2 (kp) 2

m m

If the fields are to be finite at r = 0 or r = oo, then the fields

are of the form

S(r,,z) = A e ne (2.6)m , n=-oo mn Kn (-m •

Floquet's Theorem25 states that the fields at z = z 4. p are related

to the fields a~t z by a complex constant. If B3 = B . m then Equation(2.6)m

may be written

(m e-in( -im-

4•(r,4,Z) = e P A p e e (2.Ga)
m,• n=-co

K

Now Equation (2.6a) satisfies Floquet's Theorem since

ý(rz + p) = e-i 13 4'(r, cz)

When z is changed to z + z and cb changed simultaneously to +o where
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z 0 = p ý , the fields must be the same except, for a complex constant.zo o ]

The property that the fields differ only bv a complex constant after

the above combination of translation and rofation is the result of
26

"The Generalized Floquet Theorem 2 % In "Ttie Generalized Floquet

Theorem" use is made of the periodicity not only in the translation alone

or in the rotation alone but i.n the combination of translation, rotation,

and other kinds of reflection symmetries.

The Generalized Floquet Theorem is satisfied for the helix whose fields

are described by Equation (2.6a) if and only if n -m. Equation (2.6a)

becomes

-i -- z 0 InT -n1~

S(r, c,z) = e P E A e in (P , (2.7)
n=-oo K ('Tn

Let the logitudinal fields be

-1 z A I n -n
EiO p 00 n nn -E = e Z:0r e P(2.81)n=- A OKn

n n

-i- i

-1 Z 13
i'O p 00 Bn n e pH z e Zn e P (2.9)

n=-oo
B 0  K r

n nl n(

where i and 0 refer to r < a and r > a respectively.

By applying Maxwell's equation the other fields are
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8 nIB

E : e re B ( 2 o1 0 )

rn An nLn -Tn - 2 non

6 ~ n iI 1 rrpi.

pp
- A I n B-

.8iO ii n I
i' 0 p n n(npn p p)1

Er e 2 e (2. ol,,l

n=H-oo n A nOK 1r 
ir 0 ( ° r2n nl (Tn P) Bn n (n

__ 3 n Z FiIn iil. n ii rT ]p n

p

A n I r o B -i 13)
H .)i 0 P 0 1(nP P n i nPT P (.2

n o n o ,< A 0n nl n r i)2 T O2 rT(.

2 Bn Kn nB n n j
H e~ E -i• P

r- 2 (2 13)r n=-oo --n B 0K

r An°Kn 'n P) p

The boundary conditions for the tape helix at r a are,

1) Tangential electric field is continuous everywhere on the cylinder

r = a.
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2) Tangential mag!-etic intensity is discontinuous by the surface

current.

The surface current will be assumed to haie the following form

0-

Jl 0 elsewhere in 0 <, z < p (2.14)

Such an assumption is justified because the fields at • - are related

to the fields at cý exactly in the manner in which the fields at I 4 -i

1 1are related to the fields at i where 4, i and CP are arbitrary. The

reason for the previous statement is that if the helix is infinite then

one cannot distinguish between the fields at 4 and I except by The complex

constant as shown in Equation(2.7) Later, in Chapter 5, it will be shown

that the solution for an infinite helix fed at the origin wi.ll be of The
-i (1 c@

form e This current is confined to the tape and is flowing

only in the parallel direction. In addition the current. has a phase

shift only when ý of the center line is changed. Thus the current

satisfies Floquet's Theorem. If one as to be successful in matching

boundary conditions the current must be expanded in the form of Equation(2.,-

viz.

13-i -- a ]-
S00

J =e F' jlln e p (2,15)
n=-o o

This form for the current is identical to the form for the fields,
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Equation (2.7), and permits the matching of the boundary conditions.

If one examines Equation(2.15), Equation (2.14) would be rewritten as

S-i1 -z -i -

J e P e P 0 < <
0

Jl := (2.16:)

0 elsewhere

The current of Equation(2ol6)is easily expressed in a Fourier series

of the form of Equation(2 15). The coefficients are found to be

n

jlln f Je P e P dý

0

i B nj & -' 8-• sn

Jlln- e 2p 2p (2.17a)
p 57--

n

2p

j jn = l1n cos (2.17b)

jzn = lln sin 4 (2.17c)

Now since all the fields and currents are expanded in similar series of

linear independent functions, the boundary conditions must apply to each

term of the series or space harmonic. The boundary conditions are
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E O~ (2. o18a)
1 0zn Zn (2.

E i E (02.18b)

ýPn zn zn

and

Jz Hn (2.1i8d)

If Equations(2.8)through(2.14 are substituted into Equation(2,18) the following 1
equations are obtained.

!
A II a) - An OKn ( an ) . 0 (2o19a!

T

Aa) + -BIA

(Tn n n Bn n nn-(T

p

- E

p B K 0 cos

B n I n nn B aK n jn (cos I-

)

'I
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0 ~ nBn/ o a) a)A OK i Trn n n n - n ni n
n nl aiE

p

n

+ n Bn 1 -T 311n sin (2, 19d)
P nf nf ( n P

n ai E

P

1joThe above four equations can be solved for A and B o These solutionsn n

yield

K -a

A jlln cos sin (2.20a)n W
p

B = - K 1 ( ) _na jlln cos P (2o20b)

A°An n n
p 7

=A (2, 20c)

nn K (nt)o2d

n n

Knl (n -

where use of the Wronskian, I (x) K (x) - I (x) Kn(x) I was made.
n n n n



18

The component of electric field parallel to the helix may now be

written as

00

Ell El Elin (2.21)

where

Eln= Ezn sin L + E n coso (2.22)

If Equations(2.8), (2.10) and(2.20) are substituted into Equation(2.22),Elln

is obtained viz.

-1 z 2 n

i e P e • sin 2 ln nn
2

En p~2 jlnI K 1 q

-2n 5na ctn + I K ctn2
-P (2.23)n n

p

If Equation(2.23)is substituted in Equation(2.2] and E set equal to

zero along the center line of the tape, i.e., 0 = 0, then the determinantal

equation for B is obtained



19

ie ~ ~~~ Jl si--0-,,)2
+- E~~ iK[ ic2n2 -. 2

4 k 211Kn tn22 (2. 241)
n n

7Equation (2.24) has been found by Sensi3per It was reproduced here

using the concept of generalized periodicity. The factor ouLside )he

summation cannot be zero. Therefore both s(2des of Equat.on(2.2may be

divided by the non-zero factor. If the following relations among the

Besseln functions

2

In (x) Kn (x) = -_xn2 ýIn.-1 K n-1 I n+ 1[:. Kn.i•l-l n,-1 n 4.- I K n+1- I n-,-1

E ua (xo (2.x)h a 1 fn y e K Kw r
n n 4 g-ener l e e n+iI. Tnh fn-a1 n+r outd the

Ssubsmma tion c nno Eqzer ion T .2hee one obtains
2re

0I •) • 2) - . K 2 ct n -Kn KI nK DK

nn nn n- 1. n-i- I n.

(2.25)
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where

(6
ns in-

D 2 p

n

2p

T --

The argument of each IK product in Equations (23, 24 and 25) is p

If

A Z I ( .a ) K (T a ) D
Sn+i n Kn+,i n - n

n=-o p p

then Equation(2.25) may be written as

k2 -2
62

s3- .2 A+ + A_1 - 2A
sin 2 2 + (2.26)k%2 c2tn 2 P 2Ao

Equation(2.26)is the determinantal equation for the tape helix derived by

assuming a surface current uniform across the tape with phase shift along

the length of the tape. The form of Equation(2.26)is suitable for studying

the behavior of 3 as a function of k.

2.3 Derivation by Transform Techniques

In this section the integral equation for the electric field on an

infinite helix is derived. The determinantal equation is then obtained

by taking the Fourier transform of the electric field along the helix. i

I1
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A current I(ý) is assumed along the center line of th.e helix and. -then

the electric field is calculated by finding first the vector potential

= f - -iekR
A•- I -.-- dL (2.27)

4 1TJ R

and second the electric field

= -~ A grad divA
E twA (2.28)

The calculation gives

- i f I e- kRJ - T " (ikI+ dL
41T fRk2R

a -- (ik + - ) dL (2.29)
+ 4-T f aR R R R2J

where a\R is unit vector pointing toward the observation point from the

source point. The component of electric field parallel to the center

line is given by E •ii" On IhE surface of the cylinder

El • ) _ - IF 2

E iwa-2) 1. ( l) [a2cos + p 2 fl(R) d1I
112 2 1/2 f a o (~÷

47T(a +

2 1 R 2 1 2 P2 30

10 W) ~ asin +P4 f 2 f(R) dý~2.O
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2 22 2
R 2 1- -_o + P

i kR

1 kR k 2R R

2 R k (ik4.

fI
p

Sp
p 2

The expression may be written as

El(40, 0)_ -72 /f22 + 22 1 2, e dik
4Tk 2(a 2 +p) / 2f " +k[8a) o2 R

(2.31)

and, integrating by parts twice, the differentiation may be thrown over

to the current as

E 1l l( 4 ), 4 Tk 2  ( a2 + 2 / f2 a T)2 1 2 1  2 j e 1

00La' + k (4)[a cos(.4-4 ),ZjJ d4)

(2.32)

where I and d at + oo are zero.dýl

Equation(2.31) is written symbolically as

00

Eli(4., •) = I(4)) Z(4-4l,•)d4I (2.33) j

-00
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The Fourier Transform may easily be taken since the integral is of the

convolution type. The transform, denoted by -, with respect to

''(B,) (B) Z(z,•) (2.34)

B is the transform variable and • is to be treated as a parameter.

If the factor -(2R , is ignored and z = p c in the non-periodic47T(a2-•R2) 1/

part, Z(P,ý) may be written as

22cos 2 e 2 e-ikR

= aýco)" P - (2 35)
R k dz2 R

Note that when a derivative with respect to z is taken,ý is a function

of z Now Z(1,z,ý) is periodic in c with period 217. If Z(cq,z,) is

expanded in a Fourier series with z and ý as parameters the result is

oo iný
Z(.,z:) = z (z, ý) e (2,36)

n=-o0

where

27T

z z,) 2 - e-n"dý (2.,37)

0

If z is replaced by p in Equation (2.36) the result is

00 inýz: z e
n=-oo
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If the Fourier Transform of Z (pn,•) with respect to @ is n(B,•) the

transform of Z(ý,_p ) is

Z (B,•) = n Z (B4.+n) (2,38)n,
n=-oo

with

n(13,) - f Zn(pA,) ei0 dý (2.39)

If Zn(p•,) is replaced by using Equation(2.37) one obtains, after an inter- -
change in the order of integration,

Zn(03)) = (21)227 e-i d1 l Z(Wl,p'P,ý)eJB d4

I0 -00 (2.40)

The integration with respect to c may now be effected by

• e-ik(g2 :2)1/2[J e(g 2 2 )1/2 e2Bgdg = K [c(B2_k 2 ) 1/ 2 ] (2.41)
fo 2 (g 2"+;2 ) 1/20

27
using Campbell and Foster pair 917.

Making the change of variable a = + in Equation (2.35) resulLs in

p

2 1 2 -ikR 1 82 e-ikR I
Z(ý1, a) = [a cos +p R e 2  R

R +k2 a
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2 2 1 -2
with R = 2a (1 - cos ) - (p)2

The interesting integral in Equation 4O)is

e e da (2.42)

-iR

which is equal to

-'(3 2 1.2Ia(B2 
- p k 2 ) 1

0
p

where

2

a 2 (1 - cos

The inner integral in Equatlon(240) is

-IB -2 B2

2 p (2 - 2)'2 1 a2 2 B
0 [..(B -p k [a cos p (2 43)p 0 

k 2

28

Now from Erdely2 p. 102 No, 35, K is expanded as
0

K (w) = I (z) K (z) -. 2 L T Wz) K (z) cos ný (2°44)
0 0 0 n nn= 1

where

w = 2a (1 - cos 0)1,2
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If

1/2 2 -2 2 1/2
w= 24 z (1 - cos •)l(B2-p k2)

then z is

2a (32 2 k2a.= - p 1k/2

p

If Equation(2.41 is substituted into integral (2.40) and integrated, the 1
result for Z (I,) isn

2 p 2

0(B) = a e -- [I K +2B K 4-1 Kn] (2.45)
n n4-i n+1 n n n-1 n-i

p

where

2 32 [

1 2 2
B -- (p--

a 
k2)

and all arguments are [I

2["

a 2 2 2 i/2

p k

Therefore from Equations (2.38) and(2.45) Z (3,ý) is [

2a
2  -i(13+n) -

-Z(B,) Ea e [In+lKn+il(T'n) + 2BInK n(Tn)+In Kn-l(Tn)] (2.46)

p n=--o

where I_2

n [(B+n)2 p 2 k 21/2I

p n • '
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Now if the boundary condition on E (1I1) is that the average of the

electric field with respect to ý be zero for all ý, then the condition

of Z(f,,) is

6/2

i f ' (i,) dý = 0 (2,47)

/2

The result of Equation(2.47) yields the determinantal equation, viz.

2a
2  o0

0 6 [ K (T) 4. 2B I K (T) In (TD)] D (2.48)
n---00 n 1nnn nfn-

where

6
sin (134-n) -

D - 2p
n "

(B+n)

2p

If

00
A L= I (Tn) K *(Tn)D

Sn+1 n n+i n n

Equation(2.48) may be written as

2-2
2_ k p
2 sin2k A + 4A 1 -2Ao

2 2A (2.49)

kE o e dtnso tho

Equation (2.49h, derived by transform techniques., is the same as Equati~on(2.26)
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derived by applying boundary conditions. Patton1 2 obtained the

determinantal equation for the round wire version of the helix by usi.ng

the transform techniques. The approximations used for the round wire

version were that the current is concentrated in a filament at the center

of the wire and that the electric field is zero on a line which is either

the smallest or largest distance from the z axis. The transform

technique had not previously been applied to the tape helix. The

approximations used were that the current is concentrated in a filament

at the center of the tape and that the average of the electric field

over the tape is zero.

2.4 Interpretation of the Determinantal Equation as a Complex-Valued Equation

In addition to the real valued solutions for the determinantal

7.
equation found by Sensiper it will be shown in Chapter 4 that there

exist solutions where the phase constant, B, is complex-valued if the

determinantal equation is interpreted as a complex-valued equation. The

interpretation of the determinantal equation as a complex-valued

equation is now considered.

If there exists a solution for B which is complex-valued, then the

arguments, TM? of the I K products are complex-valued since

T_2- 21l/2 a
Tm (B4+m) 2_ p k 2 1/

The question of which branch of the square root to choose for T will bem -*

discussed shortly. Again consider the determinantal equation. If the

arguments of the IK products are complex-valued, then the IK products are
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complex-valued. It is seen that if 13 is complex-valued then T is complex-

valued and then, in turn, the I K products are complex-valuedo Each sideS nn

of the determinantal equation, Equation (2.49) is complex-valued,. It

remains, of course, to show that there exist solutions for 3 which are

complex-valued. This w11 be done.

Which branch of the square root for T should be chosen? If Tm n

written as

T T 2)1/2 1n n(r2) = r I e =T •.1 T

n n n nr ni

where
T

e = an -1 ni

n
nr

the question is reduced to choosing the appropriate the branch of the

arc tangent for 13 . One set. of solutions of the determinantal equationn

was found choosing the principle value of the arc tangent for each 1 nn

A second set of solutions was found by adding 4. 7 to the principle value

of the arc tangent for 01 and choosing the princIple value of the arc

tangent for 0 n9 n A -1. The i or - sign is chosen to make Jarg T 1 < 7T.

A third set of solutions was found by adding . I to the principle value

of the arc tangent of both E1 and 13 and choosing the principle value
-1 _2

of the arc tangent for 3n9 n F1 -1, -.2. The z. or - sign is chosen to make

larg T I < f, n = -1, -2. For a set of solutions each argument is treated

as a continuous function of k. To understand this continuous treatment

consider

S= ((r.-'l) 2 (k2 4 B 2 ) + 21 i B 1/2 a
-. i ,'l i rp
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with
with 20_1 =tan-i1 2 B i(Br-,i1

-1 2 (3( B - 2)
(B-1) -(k +3

where

T = IT_1 1 e k

and

B = (3r4 1 B

r 1

Suppose the k-B diagram has a solution k r sin ý with 3. < 0-and small.r I.

Figure 2.2a and 2b shows the k-B diagram. The salient features of the

locus of T 2 as a function of k are shown in Figure 2.3. For k > 0-i

and small the real part of T 2 is positive since (B -i,2 > K + B2 [
-i r i.

2
The imaginary part of T is also positive since B (3r-1) is positive.

With both the real and imaginary parts of T positive the T as a
-l -1

function of k lies in the first quadrant. The locus remains in the first

quadrant until a value of k is reached such that

2 I

(B-1) =k + 8.2
"r 1

This value of k is approximately k r-13 since 1 is small. As k is

increased the locus enters the second quadrant to remain until

[
k = sin 4, i.e. 8r = 1

"~I:
____
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3 AXIS

a b.

Figure 2.2. A k - B diagram for consideration of T_

i 2i (13r-O)AxIs

T.12 PLANE

k2 •.I, Gr <1

<1 INCREASING

"1, -k:0 [(,8r -1 f- (k /ýi2)] AXIS

2 2 2

2Figure 2.3. The continuous locus in the T plane.
-I
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Now as k is increased the locus of T 2 enters the third quadrant-i
2 2

since B. < 0 and B -1 > 0. As k is further increased (B -,1) =7 iB 21 r r1

and the locus leaves the third quadrant.

Now for k increasing the locus enters the fourth quadrant since

( 1 -)2 > + 2 and B < 0. The other arguments are treated

similarly as continuous functions. j
2.5 Summary

The same determinantal equation for the tape helix has been derived I
by two methods making slightly different assumptions. In the derivation by

matching boundary conditions a uniform currenmt over the entire width of I
the tape was assumed. For the derivation by Fourier Transforms a current

was concentrated in a filament in the center line of the helix., and E1i

on the tape was averaged to zero.

If the phase constant B is complex-valued then the determinantal

equation is complex-valued. Further, if the phase constant is complex-

valued one knows how the arguments of the IK products can be treated as

continuous functions. The determinantal equation is now ready for study.

i
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3. STUDY" OF TWO SIMPLIFIED EQUATIONS

3.1 Introduction

The determinantal equation, Equation (2.26), is somewhat complex as

well as being complex valued if the phase constant, B, is complex valued,

It will be instructive to study two simplified equations so that one will

gain an insight into the behavior of the determinantal equation. This

study will be done in the next two sections.

3.2 The First Simplified Equation

The determinantal equation with k = k p may be written as

2
B2 k- [In.Kn l(Tn) 4 . IiKn (Tn) 2InKn(Tn)] D

s2 n4 n-- n n-l n-l n n n n n
sin _____ (3.1)

2 2

Sctn 2 I K (T) D
nn n nn=-oo

where

2

T a [(B4n)2 2k ]1,/2
n -

p

and

&
sin (84-n) -

D 2p
n -

6
(804n) -

2p

The I K products all have branch points at the origin. To see this consider
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a small argument approximation 2 8 for the hyperbolic Bessel functions.

I
For Iz -<<. 1

n 2 n,

I(z) _1, K (z) 1n

0 I

n n z 1 .2 n2 n-2

K (z) = (-I)l(-z) in (n- [) n
n 2 22 2Z

if

niO0

1
Jrn I (T )K (T) - a constantn m n m 2n'

T --- 0
m

Howeverl the first term in the small argument approximation for K (z)

is logarithmic and has branch point at. the origin. This branch point

remains, although in the limit as z--O the term containing the A,

logarithmic factor tends to zero. For n = 0 the lim I (T m)K (Tm ) has
T--ý0

m
logarithmic character. Consequently, if the argument of I K is small,

that term will make a substantial contribution to the determinantal

equation.

If one inspects T 1

-l=a ) 2 2 ir 1/2T =-1 (Br-1)2_-(B i 2+'i )+12B i(Br,- 1)]11

p
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where 3 = 2 ,13 it is seen that in the region where B3 is near unityr 1' r

T 1 will change rapidly, These facts that T changes rapidly when B3-l -I r

is near unity and that if the argument of I K will make a substantial

contribution to the determinantal equation, sugges1 that a simplIfied

equation that would behave like the determinanral equation near 3 = 1
r

would be obtained by replacing the sum in the numeral or of Equation (3.1.)

by

o0K (_-l ' 22K2 T I2 )2 1 E.1-4

Inspection of the denominator of Equaion(3ol) shows that the denominator

is slowly varying with B. This additional result leads one to the

following simplified equation

2
B2 .. . k __

Bn , 2,Ik - K ( 7 1 , K ('T 1 - 2 J K ( T _!si . o 0 i 22- 11
-2 n2 -. A ~(3 2)

k c A

where A is a parameter,

The parameter A is picked to be about equal to 2A for the values of0

the helix parameter studied.

As the tape is made more narrow the sum A increases.0

The solutions for B as a function of k are shown in Figures 3.1a

through, 3o10b for various values of A, The real and imaginary parts of

the phase constant are given on individua-l figures with the real part

as a function of k on the figures win suffix "a." and the i.maginary part

as a function of k on the figures with suffix "b".
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The line k = sin 'I is shown on all the k B planes. The liner r

separates the k ,- plane into two regions, one the region above ther

line k =r sin P where the solutions correspond to fast waves, i.e.

waves which have a phase constant. corresponding to a phase velocity

greater than velocity of light, and two the region below the line where

the solutions correspond to slow waves, i..eo, waves which have a phase

constant corresponding to a phase velocity less than the velocity of

light. The lines Br = 1 + k are also shown on the k Br planes.

Inside the "v' shaped region formed by the lines B I • k the argumentr ,

T has non-zero imaginary part. Outside the "v" shaped region formed

by the lines B 1 + k the argument 'T may have zero imaginary part.

The immediate observation upon examining Figures 3.7a and 3.7b is that

for fixed k there are several values of B. Some of the solutions correspond

to choosing L T as the argument of the IK products and others to choosing-i

- T . The solutions are named mode 1, mode 2 and mode 3 with The--1

determination of the argument for mode 1 as 4 T and the determination-i

of the argument for mode 2 and mode 3 as - T Let kcl be the smallest

value of k such that mode 1 has a solution for 3 with a non-zero imaginary

part.

The mode 1 solution for k < k agrees with. the solution shown bycl
7

Sensiper for the real valued determinantal equation. The mode 2

solution also agrees with the solution found by Sensipero

The character of the solution is different depending on whether the

parameter A is greater than Ael or less than, A cl Th1- mode .1 solution for

k > k clis typical of the solutions when A > Acl where Acl will be defined

later. The only necessary information now is that A used in Figures 3.7a
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and 3.7b satisfies A > A.cl Note that real part of the mode 1 solution

is not on the k r3 sin P line which represents a solution correspondingr

to the velocity of light. As k is increased from kcl it is seen that Bcl 1

increases very fast as a function of k. The imaginary part of 8 for mode

3 is larger than the corresponding solution for mode 1. A wave with

this attenuation would decay rapidly. Consider the results for A = 1.0

shown in Figures 3.2a and 3.2b.

The solutions with zero imaginary parts, mode 2 and mode 1 with

k < kCV are similar to the corresponding solutions where A = 3.0, This

similarity, however, is not found for The solutions with non-zero imaginary

parts. The behavior is considerably different than when A > AclO The

fact that there is a considerable difference in behavior of the solutions

for A < Acl and A > Acl leads to the obvious definition for Acl* The

value Acl is that value of the parameter A in Equation(3.2)that separates

the values of A into two sets, one set, A > A cl such that the solutions

have the character similar to that shown in Figures 3.7a and 3.7b and the

other set, A < Acl, such that the solutions have the character similar to

that shown in Figures 3.2a and 3.2b. The outstanding difference in the

behavior for A < Ac and A > A may be observed by inspecting the imaginary

part of the phase constant corresponding to mode 1. If A > A thenc1

1i > 0 for all k > k1cl If A < Acl then there exist regions where there

exists no mode 1 solution for k > kcl" The value A = Ael corresponds to

a value 2A which, in turn, corresponds to a tape width 5 that is larger0

than tape widths consistent, with the narrow tape approximation. Therefore,

no solutions of the determanantal equation in the region B3 near unity will

r
correspond to the solutions given in Figures 3.2a and 3o2b. They are given
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to assist in the understanding of this kind of equation. The strangest

property of the solutions in Figures 3.2a and 3.2b is that in order to

have a continuous solution:, B as a function of k, it is necessary to [
change branches of the argument at k .273 and k = .358. These

values of k correspond to values of = 0.

The argument for the mode 1 solution corresponding to k = .372-is
i1T/2I

pe where p is real. The argument for the mode 2 solution corresponding

to k = .273+ is pei(•/2 - ). The arguments are discontinuous by the

amount 7r but the value of the right hand side of Equation(3o2)is the same

for both arguments. The reason for this equality is not at first obvious,

Now

10 (ip)K 0(ip)+1 2 (ip)K 2 (ip)-2Il (ip)K I(ip)

is the complex conjugate of

I° (-ip)K 0 (-ip)+I2 (-.ip) K2 (-ip)-2I1 (-ip) K1 (-ip)

for p real. In addition, the sum of the imaginary parts is zero for

the value k = .273. This may be seen easily from the fact that for

k = .273, B~= 0, and therefore, the left hand side of Equation(3.2)has

zero imaginary part. The right hand side also has zero imaginary part.

The right hand sides for k = .273- and .273+ are complex conjugates and have

zero imaginary parts., and therefore the right hand sides are equal. A
fT

similar situation occurs for k = .358. Figures 3.6a and 3.6b show the

results for a value of A near Acl A = 1.5.

I.
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Note that the difference in behavior of lhe solution for A 1 1.0 and

A = 1.5. Both A = 1.0 and A = 1.5 are less than A since there exists

a region of k > k where no solulion tor mode 1 exists, The real partscl

of the mode 1 solution are connected by a continuous solution of the

other determination of the square root compared to the mode 1 solution

for A = 1.5o However for A = 1.0 the real parts of the mode 1 solution

are not connected by a continuous solution. [f Figures 3.2a through 3.6b

are studied, it is seen that the change from connecting the real parts of

the mode 1 solution by a continuous solutian tD no', connec t lng the real

parts takes place in a continuous manner. There is no question of

discontinuity of the arguments since all the solu'ions hai,e the same

determination for the square roots. IT is reiterated that this

particular behavior will not be found in the del.erminanral equation

since A < Acl corresponds to tapes which are too wide for the naTrow

tape approximation.

Figure 3.1a and 3.1b show the results for A = .9 and it is observed

that the behavior of the solutions as a function of A is in a continuous

manner.

Consider some of the general properties of the solutions for A > A c.

(Inspect Figures 3.7a through 3.10b) Note that k cl the lowest value of

for which mode 1 has a non-zero imaginary part, becomes greater as A is

increased. Also for > > kC the real part. of 8 follows more closely to the

k= B sin 4' line and follows for a greater range of k values, For ther

imaginary part the local maximum near k = .2 and the local minimum near

i = .25 decrease as A increases. The values of B for .4 < k < .5

increase as A Increases. For mode 2, the i1maginary part increases as A

I
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3- T- 1- .:,- -, -' - --M O D E 2 .
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MODE 1.

MODE 3.

O .2 .4 .6 8 1.0 1.2 14 1.6

Figure 3.1a. The k - B diagram for simplified equation one;
r 0

A = 9 12.6

.5

MODE I..T
-.MODE 3. -T. *-

.3 MOE3

.2 • =12.6"

A .9

MODE 1.

0 .02 .04 .06 .08 .10 .12 .14 .16

Figure 3.1b. The k - B diagram for simplified equation one;

A = .9j,~i: 12.60.i
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S°•\ MODE 2.

.2

MODE I.- "-RSTIN.-o-o
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0 V .4 .6 .8 1.0 1.2 1.4 1.6 1.8
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Figure 3.2a, The k - B3 diagram for simplified equation one;

A = r. 0 12.6

MODE I o.---o

MODE 
3.

.4

k MODE 3,-/'

•-"° ""- MODE 1. =12.6*

Az 1.0

I I I I I I II

0 .02 .04 .06 .08 .10 .12 .14 .16

Figure 3o2b. The k - B diagram for simplified equation one;
A = 1i0, ' 12.6°o
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.30-

.29 MODE 3.
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- u-a-- MODE 1.

.26- 12.6*

A 1.0

.25

0 / .82 .86 .90 .94 .98 1.02 1.06 1.10
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Figure 3.3a. The k - B diagram for simplified equation one
expanded near = .25; A = 1.0ý = 12.60.

.36

.34 .---- C-

- T -0-a.--a.•-

.32 - 12.6*
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MODE 3.MODE 3.
.28 -

MODE I.

.26-

0 .02 .04 .06 .08 .10 .12 .14 .16

Figure 3.3b. The k - 8 diagram for simplified equation one
expanded near k = .25; A = 1.0 0, = 12.6'.

-i
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.30- T- 1 .,o-0-0-.
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- I
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.26- MODE I.--"
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S I I I I I I

0 .82 .86 .90 .94 .98 1.02 1.06 1.10
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Figure 3.4a. The k - B diagram for simplified equation one
r 0expanded near k = .25, A 1.05, P = 12.6°o
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4= 12.6'

TT A 1.05
.28-- S~MODE 3.•

.27•

.26--
MODE 1

,25 -

0 .02 .04 .06 .08 01 .I10 .1 2 .14 .16 .20

II
Figure 3.4bo The k - B diagram for s.mp;ified equation oneexpanded near k .25; A =1,05, • = 12.60.



44I

MODE 3.

.28 i

.27- T" ,o--a--o-

k .26 2 1.6-

.25 MODE I. MODE 3.

26 -r

.25

0 .86 .90 94 .98 1.02 1.06 IJl1
Or

Figure 3.5a. The k - B diagram for simplified equationr -60°

one expanded neat k .25; A = 1 o.1 12.0
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- .26- r I
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.25- MODE 1. 12.6°

A 1.1

.24
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0 .02 .04 .06 .08 .10 .12 .14 .16

Figure 3.5b. The k - B. diagram for simplified equation
one expanhed near k = o25; A = 1.1, P = 12.6'.
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Figure 3.6b. The k - B. diagram for s.i.mplified equation one.

A 1.5 , = 12.6
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1236°
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Figure 3.7a. The k - B diagram for simplified equation one;

A = 2.0, r4j = 12.6
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Figure 3.7b. The k - B diagram for simplified equation one;
A = 2.0, 0 = 12.60.



47

.5

MODE I

.4 
Pr= I+-

MODE 3
4= 12.6°

.3 A=3,0

- r - MODE 2

.2 r-I

.1i Ir[

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6

Figure 3.8a. The k - B diagram for simplified equation one;
A = 3.0, r'j 12.6
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Figure 3.8b. The k - B. diagram for simplified equation one;
A = 3,0, 1. j = 12.6
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Figure 3.9a. The k - B diagram for simplified equation one;
A = 5.0 r, = 12.60.

.5

.4-

MODELI

.3 MOPE 3.

.2 " C_ 0

A -5.0 •

I I I I I

0 .02 •04 .06 .08 .1 0 .I 2 .I 4 .16 .18 ,

Figure 3.9b. The k - diagram for simplified equation one;A = .0, • = 2.6°
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A= 25.0

MODEE 3.

0 .2 .4 6 .8 1.0 1.2 A. 1.6

Figure 3.10a. The k - B diagram for simplified equation one;

A 25.0, r 1 2.60.
.5

.4

3 ~MODELi

.2

' 1,2.60

.1A 25.0

0 .02' .04 .06 .08 .10 .12 .14

Figure 3.10b. The k - B. diagram for simplified equation one;
A =25.0, .~i12.6.
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increases.

One could study this simplified equation in more detail, e.g., as a

function of pitch angle 4. This kind of study will be delayed until the

complete determinantal equation is studied. At that time the physical

significance of the increasing or decreasing of solutions will be

discussed.

The reason for studying the simplified equation was to show the exist-

ence of the various modal solutions of the determinantal equation and

show how the arguments of the IK products could be treated so that the

solutions would be continuous functions of k.

3.3 The Second Simplified Equation

It will be instructive to study another simplified equation. This

equation will approximate the behavior of the determinantal equation in

the region Br near 2. Since for B3r Z 2,

2

T_ 2 r-2) - (k2 i2)+2i2 B (Br-2)1/2 ctn-2 ri ir

changes rapidly, only those terms in the numerator of the determinantal

equation, Equation (3.i), will be used for the simplified equation. Also,

as stated in the last section, the denominator. 2Ao, is a slowly varying

function of k and B. Again 2A is replaced by a constant, A. Simplified
0

equation two is

2s2
B s2 1 KI(T 2 )+ IK(T) -2 I1K (T)

n 1(3.3)
2 2 Ak ctn• '
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The solu.tions are shown in the following figures.

The li.ne rk r sin i is shown on the k - Br planes, The linesr r

(r = 2 4. k are shown on the k - (r planes. Inside the ''V shaped.

region formed by the ilnes B3 2 4. k the argument 'T has non-zeror .2

imaginary part. Outside the "v" shaped region formed by the lines

(r = 2 4. k the argument '._ 2 may have zero imaginary part.

If one examines Figures 3.11 and 3.12 the immediate observation is

that for a given k there exists more than one solution for B. The different

modes do not all have the same determination of the square root for

agrument of the [K products. Modes 2 and 5 have the positive deter-

mination for the argument of the TK products, whereas modes 4 and 6 have

thenegative determination.

Let kc2 be the lowest '-alue of k such that the solution for mode

2 will have a non-zero imaginary part. The mode 2 solution for

r < 2-k and k < k s similar to the solution found by Sensiper 7

r c2

The mode 4 solution also corresponds to Sensiper's results. The mode 2

solution for k > kc2 has an. imaginary pdrt which is similar to the mode

one solution to the simplified equation of the previous section.

Consider the results shown in Figure 3.16 which i.s an expanded view

of a section of Fi.gure 3olla, Note that to have the real part of the

phase constant continuous across the line By = 2-k, for k < k c2 it 1is

necessary to change the determination of the squ.are root. This difference

in the determination of the argument.s causes a discontinui.ty in the

arguments by the amount IT. However the value of the right hand side

of Equation (3.:ý is the same for either determinati.on of the 2

argument at. B ( 2-k. This equal.ity is true because when B = 2-krr
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and O =, T = 0 and furtherand gi-2

lim In(T_ ) Kn(T_) = n 0

n -2 n -2 2n'

-2

which is independent of which branch was chosen.

The results shown in Figure 3.18 which is an expanded view of a

section of Figure 3.11a are to be studied. Again the same type of

discontinuity occurs. The line B = 2 + k separates modes 4 and 5 whichr

have a continuous real part. The argument has a discontinuity equal to 7T

for modes 4 and 5 at 13 = 2 + k. The right hand side of Equation 3.3r

is the same for either determination of the argument. The reason for this

equality is similar to that given above.

In Figure 3.21a the behavior of the solutions for modes 2 and 5 should

be observed. This behavior is typical for values of the parameter A less

than A c2 where Ac2 will be defined later. In Figure 3.19 the behavior

of the solutions for modes 2 and 5 for A = l0,should be studied. Note

the behavior of the solutions is different for A = 10.0 than for A = 7.0.

This behavior for A = 10.0 is typical for values of the parameter A > Ac 2 .

The number Ac2 is now easily defined. The number Ac2 divides the set A

into two classes, one, A < Ac2, where the mode 2 solutions corresponding

to these values of A are not continuous with the solutions for mode 4

and the other, A > A where the mode 2 solutions corresponding to

these values of A are continuous with the solutions for mode 4.

If one examines Figures 3.22a, 3.22b, 3.23a, 3.23b,,3o24a, and 3.24b

it is seen how these solutions take on the different character as the
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Figure 3.11a. The k - B diagram for simplified equation two;r, 0
A 1.0 = Y 10
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-T 2 -- )-
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Figure 3.1lb. The k - B, diagram 'for simplified equation two;
A - 1o0, ½ .-. 100.
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Figure 3.12a. The k - B diagram for simplified equation two;
A = 5.0, r 1 ,o
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Figure 3.12b. The k - B. diagram for simplified equation two;
A = 5.0, "• =i 0 ".
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Figure 3.13a. The k - B diagram for simplifi.ed equation two;
A = 1 0.0 r 100
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Figure 3.13b. The k - B, d..iagram Aor simplifed equation two;
A '-- M0 0,1 ,.- 1.0o.
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Figure 3.14a. The k - B diagram for simplified equation two;

A = 25.r = .100
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A4 - MODE 2

*b = I0° MODE5
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2M MODE 6

k I
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Figure 3.14b. The k - B diagram for simplified equation two;

A = 2 5 . 0 ,r 1 = 100.
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Figure 3.15a. The k - Bdiagram for simplified equation two;
A-= 1.0, 4= 12.6.
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Figure 3.15b. The k - B. diagram for simplified equation two;

A = 1.0', 14'= 12.60.
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Figure 3.20a. The k - B diagram for simplified equation two near k
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Figure 3.20b. The k - B, diagram for simplified equation two near kc4
A = 6.0, 1=io0 .
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Figure 3.21a, The k - r diagram for simplified equation two near kc4;
A = 7.0, p 100.
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Figure 3.21bo The k - B diagram for simplified equation two near k c4;

A = 7o0• . p 100c
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Figure 3.22a. The k - B diagram for simplified equation two near k
A =7.25, r 100. c4
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Figure 3.22b. The k - B diagram for simplified equation two near kc4
A =7.25,i 10'.
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Figure 3.23a. The k - B diagram for simplified equation two near kc4
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Figure 3.23b. The k - B. diagram for simplified equation two near k

A = 7.5, . = 100. c4'
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Figure 3.24a. The k - B diagram for simplified equation two near kc4
A =8.0p r• = 10o.
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Figure 3.24b. The k - B. diagram for simplified equation two near k

A = 8.0, )d = Oc4.
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Figure 3.25b. The k - B. diagram for simplified equation two near k1

A = i.0, 100 k4
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value of A is increased through the value Ac2 . There is no question of

discontinuity in the argument here since all arguments are of the same

determination. Note that the character of the solutions changes in a

continuous manner as a function of the parameter A. This type of

behavior, as well as the behavior exhibited at the B = 2 + k lines
r

will be seen in the determinantal equation.

3.4 Summary

Two equations which are relatively simple compared to the determinantal

equation and which, furthermore, exhibited some of the character of the

determinantal equation were studied in this chapter. It was shown how

discontinuities in the argument of IK product could result in solutions

which would be continuous. If the discontinuities of the arguments are

not introduced there is no continuation of the solutions, Further it

was seen that the solutions for modes 2 and 4 changed character as a

function of the parameter A.

The parameter A was chosen to be approximately equal to 2A . As the

tape width 6 is made more narrow A increases. Consequently, the larger

values of the parameter A correspond to the narrower tape widths.

Solutions for B which are complex valued have been found for both

simplified equations. The use of complex roots will be discussed later.

The behavior of the solution of simplified equation one, Equation (3.2),

for A = 1.0 is reminiscent of Pierce's coupled mode theory for the helix

25as discussed by Watkins However, as was pointed out in the discussion

of equation one, the values of the parameter A < A correspond to tapes

which are not narrow, i.e. too wide for the determinantal equation to be

valid. The fact that the solutions for A > Acl, which correspond to
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narrow tapes, do not exhibit the character needed for Pierce's coupled

mode theory inhibits the use of Pierce's simple theory.

Simplified equations one and two, Equation (3.2) and (3.3), are

related to the determinantal equation for the sheath helix for sheath

helix modes -1 and -2 respectively. The complex-valued solutions for

the sheath helix and a discussion of their relation to the solutions

29
for the tape helix are given by Klock and Mittra

With the background obtained from studying the solutions of the

two simplified equations one is now ready for the determinantal equation.
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4. SOLUTION OF THE DETERMINANTAL EQUATION

4.1 Introduction

The determinantal equation

2

2 
k

sin 2 A I+A -l-2Ao
2 =tn 2 2A (4.1)

kctn24 0bo

A= En In ('r) K (T) D

2 1/2
T 4r(3, n) 2  ] an

p

sin (-+n)-n)D = ~2p k
n = 6

(13+n)

derived in Chapter 2 which is a complex-valued equation if B is complex-,

valued., was solved with the aid of a digital computer.

The determinantal equation can be written such that the complex-valued

phase constant, B, is a function only of the parameters, normalized tape

width, pitch angle, and normalized frequency. Symbolically, this is

written as 8(&,4, k). The tape width is normalized with respect to the

radius i.e. -- The ratio - is replaced by its equal, ctn qi, so that
a

p
Equation (4.1) reads

2B2 k

13ink2• A +-A -2A
Bsinj _ -A, 1.1422 _ _ -4i o

S 2 ctn2 2Ao 4

a 3
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3 n j n n+ J (Tn n

2 21/2

S=(B+n) 2 - k ] ctn
n

&
sin [(B+n) - ctn Y]

2
D

(B+n) 6 ctn '4

2

&
Define a - ctn

2
ka

The normalized frequency is k = ct-n where k is the free space wave

number. By normalizing with respect to the radius one is able to

reduce the study of the determinantal equation to the solution for the

complex valued phase constant as a function of only normalized tape width,

normalized frequency and pitch angle.

All of the coefficients in Equation (4.2) are real. Therefore., if

B = r +iB. is a solution, then 13 B -iB is a solution. If the solutionr i r i

for the phase constant. is B B r-iB , then the c dependent fields are

r -1ir -BI
of the form e e

The real part of the phase constant, B r is a measure of the phase

delay as the wave travels in the +A direction and has units of radians

per radian. The imaginary part of the phase constant, Bi, is a measure

of the attenuation as the wave travels in the +ý direction and has units

of nepers per radian.

The line k = B sin Y is shown on all the curves for B.. This line
r 1

separates the k -B diagram into two regions:
r
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1) Points above the line represent waves which are traveling down -

the tape with a phase velocity greater thian 7,he velocity of light

i.e. fast waves and

2) Points below the line represent waves which are traveling down

the tape with a phase velocity less than the velocity of light,

i.e. slow waves.

The lines 8 1 4. k and 8 2 + k are shown. Between the lines
r - r -

8 = 1 + k and between the lines 8 = 2 + k the arguments _ and 7._
r 2 -1 2 -

respectively have non-zero real parts, Recall Tr = [(B+n) 2 _ 21/2 a
n

p
4.2 Solutions

4.2.1 The k - B diagram- 100 .035

Figures 4.1a, b, c, d and e is the k - 8 diagram for pitch angle 100

and & = .035. The immediate observation is that for a value of k there

exist more than one solution for B. The various solutions or modes each

correspond to a different determination of a square root argument for

the IK products.

The determination of tlh square roots was discussed in Section 2.4.

Note that mode 1 has positive determination for both T and T 2 All

the other modes have the negative determination for T_ Modes 2,3,

and 5 have the positive determination and modes 4 and 6 have the

negative determination for T

In the regions B 1 - and r - 2 the solution behaves similarly to

the solution of thb simplified equations studied in Sections 4.2 and 4.3

respectively.

The constants k and kc2 are defined as in Section 4.2 and 4.3

respectively.

-I
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The solutions for mode 1, k < k C kl mode 2, k <. kc2; and mode 4,

k < kc4; correspond and agree with the results obtained by Sensipero

All other solutions have non-zero imaginary parts,

o308
4.2.2 Mode 1 Solution. P 12. 6 a = 10 • 00 1 4,

The solutions for mode 1 as a funcrion of & are shown in Figures 4.2a

and b. As the tape is made more narrow the real part of the phase constant

tends toward the k = B sin 'ý lLne as would be predicted for an infinite sanmallyr

narrow tape or filament, The maximum value of the imaginary part, of the

phase constant increases as the tape is made wider. The imaginary part

of the phase constant increases rapidly as k is increased from k co The

behavior of the solution changes quite fast for a small change in normalized

frequency.

Expanded views for a range of k near kcl are shown in Figures 4.3a

and b. As the tape is made more narrow, kcl increases with kcl approaching

sinY -

lsin • as tends toward zero.l+sin ,

4.2.3 Mode 1 Solution. .= o035, various pitch angles

The solutions for mode I for various pitch angles for fixed tape width,

- 0035, are shown in Figures 4.4a and b. As the pitch angle is increased

the B locus deviates less from the k = B sin Y line. This result seems
r r

reasonable physically since as the pitch angle is increased a seclion of

unit length of the helix is becoming more nearly a straight wire, Also

note that as pitch angle is increased the imaginary part of the phase

constant decreases.
o -308 .01./_2

4.2.4 Mode 3 Solution., 1 =. 12a6 10 .0001,• , .4

Figures 4.6a and b shows the mode 3 solutions as a function of tape

width. Note that the imaginary part of the phase constant is now to a
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different scale since BI is larger than it. is for any other mode.
i

4.2.5 Modes 2 and 6. =- 12,6, a = 10,-308 .010it .1, .4

The solution for modes 2 and 6 are shown in Figures 4.7a and b. Figures

4.8a and b show an expanded view for a range of k values near kc2" The

behavior for mode 2 above k is similar to the behavior for mode 1 abovec2

kcl* In contrast to mode 1 behavior, the behavior of the solution with

zero imaginary part does not approach the line = 2 - k asymptotically

but terminates at the line. To find a continuous solution, the determination

of T must be changed. This type of behavior was exhibited by simplified-2

equation two, Equation (3.3).

4.2.6 Modes 4 and 5: 10 0 . a =,10-308 .0001 .42 . = 12.60, a =oi

Modes 4 and 5 exhibit behavior as shown in Figures 4o9a and b. The

solution for mode 4 terminates on the line B = 24.k. To have a continuous
r

solution the determination of T must be changed as in simplified-2

equation two, Equation (3.3.1). Figures 4.10a and b give the results for

modes 4 and 5 for different parameters. The solution exhibits the same

character as for the previous parameters.

-10 o-15 -17
4.2.7 Modes 2,4, and 5! Y 100, Br ' 2.4, a = 10 10 i0 10

-20 '-29

In Figure 4.11a through Figure 4.15b are shown the change of

character of the solution that. modes 2, 4, and 5 exhibit as the tape width

is changed. If the tape is made sufficiently narrow, mode 2 terminates

on the line 3 = 2 ± k and connects in a continuous manner to mode 4. This

is exactly the same behavior as was shown by simplified equation two,

Equation(3.$.
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.43 0

.42 +M de24

.39

o1 __ i ,I I I

0 0 2.36 2.40 2.44 2.48Or

Figure 4.11a. The k - B diagram for thel•ape helix near k Mode 2,
4 and 5; r 10, , = 10- c4

.43 - =0°
a -10-I

.42 -

-Mode 2.

+ T- 2

.40 -

.39 -

o L. I I I I
0 .02 .04 .06 .08 .10 .12 .14 .16

1-1

Figure 4.11b. The k - B. diagram for the 6ape helix near k Modes 2y
4 and 5; 10, a = 14:

k _
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-10

.43 
ICF15

Mode 2. Pr =2+ý

.42 +T-2 Mode 4.

-o-

k.41

.40 C2

.39

2.36 2.40 2.44 2.48
Or

Figure 4.12a. The k - B diagram for the tape helix near k Modes 2
4 and 5: rp = 100, a 1 c4:

.43 - i100

.42 -

Mode 2.

.Mode 5.+T-2"0e.
S.41 -- "'0.--i +T-z

.40 -

.39 -

o I I I I
0 .02 .04 .06 .08 .10 .12 .14 .16I#i

1

Figure 4.12b. The k - B. diagram for the10 ape helixnear kc 4 : Modes 2,
4 and 5: 100 , a = 10
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.43 -

Mode 2.

.42 -+ T-2

,42 +T-;/ Mode_2 4.

S.41 -

.40

00

o _ _ _I I I i

0 2.36 2.40 2.44 2.48
er 1r

Figure 4.13a. The k - B diagram for the jfpe helix near k M4: Modes 2,
4, and 5 ;j4= 100, a =10

43 =10
-17

42
Mode 4.

k.41-

.40

.39 -

o• I I - -[

0 .02 .04 .06 .08 .10 .12 .14 .16

Figure 4.13b. The k - B diagram for Ae tape helix near Modes 2,
4, and 5; = iOa = I0 c4
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-20

Mode 4

.42 - -T-2

.40 0

O 3O 6-Mode 2. Mode 5

Figure 4.14a. The k - B diagram for the tape helix near kc4 Modes 2•
4, a n d 5 ; rY = 1 0 °, a = 1 0 -2 0 .c4

S+ 
T -20

.42

01'0

k .41 -- O,. -- M ode 2. + -

.40 - ,4

0

Figure 4.14a. The k - B,.diagram for the tape helix near k Modes 2,
4, and 5;Y= 100, a 1- c 20 . c4

.42 -

.40 10

Figure 4.14b. The k - B. diagram for the t;ape helix near ko4: Modes 2,4,, and 5;1, = i00° a = 10-20. c
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4.2.8 Solution when the Tape Width is Infinitesimally Narrow.

Mittra showed that as the tape width is made infinitesimally

narrow the asymptotic solution for the determinantal equation, Equation

(2.40) is given by

k =(4.3)

and

A graph of the above solution is shown in Figure 4.16.

To show that the solution given in Equation (1.3) is the asymptotic

solution consider the determinantal equation.

2

2 - A --A -2A
2 k 21 2- 0 (4.4)

sin2  2A

Recall

Q0
A. = • I *K .('T) Dnj n4j n+j n n

For an infinitesimally narrow tape D = 1. Now for n . 0n

I *K ( ) 1 1
n+j n+j n ) 2 [(n.j)2+T 2" /2

7as was shown by Sensiper . If T .4 0 the numerator of the right hand-1' '
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side of Equation (4.4) is finite. As T approaches zero the numerator of-i

the right hand side becomes finite because the I K (T_ ) term has a

logarithmic singularity (see Section 3.2). The denominator of the right

hand side of Equation (4.4) for Inl>>l behaves like the harmonic series

and consequently the denominator of the right hand side is finite. The

value of the right hand side of the determinantal equation, Equation (4.4),

is zero if T 1 0 and indeterminant if T = 0. The determinantal equation-i -il

then has the asymptotic solution

7
sin TT

and also has the solution

T -=0 i.e. 1+ k

-308
The solution obtained when = , a very narrow tape, agrees with

the asymptotic solution. As the tape is made wider, but. still very narrow

- -30e.g. corresponding to 1 = 10-30the solution for the phase constant.

becomes complex for k > kcl and the real part of the phase constant

deviates from the Br =-; si line which is the asymptetic solution.

For any tape corresponding to real dimensions, even very narrow tapes, the

solution deviates from the asymptotic solution.

4.3 Choosing the Predominant Modes,

In this section it will be shown that modes 1, 2 and 4 are permitted

by the interpretation of leaky mode theory, whereas modes 3, 5 and 6 are

not physically admissable.
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If only the r and z variation is considered, the fields outsi.de ',he

helix for r large may be written as

P (r,z) = e P F- a e
g a e (4,5),

n

because I K (x) behaves like e'-x for large x. Now if B = Br-.B*. the z

m m r I

dependence is

B B
r

e e

which corresponds to a wave traveling in -he. -a.z di.rection and decaying

in the +z direction. For large r the fields are given by Equation (4.5).

The only terms which could cause the fields ,. cenave :DIiroperly are

the terms corresponding to n = -1, -2 and -3. The argumen". -V 7-2 or

T_3 which could cause the mode tD behare i•prope'l; i.s shown for each

mode in Figure 4.17 along with the r dependence for tie fleid. In the

r dependence shown in Fi.gure 4.17 the reaL members : and b are positive.

Consider the mode 1 solution. For B < 1 the r dependence ,s e e

which corresponds to an outwardly traveling wave whicta is attenuated.

Since B < 1 the radiati.on corresponding ;o the phase constant is in the
r

backward direction. and decay in the Yransverse direction is proper fqr

18
the leaky wave as was shown by Marcuvatz and later discussed by

20 ar -ibr
Oliner . For Br > 1 the r dependence is e e which corresponds

to an outwardly traveling wave which is growing in amplitude. Since

B > 1 the radiation corresponding to the phase constant is in 'the
r

forward direction, and exponential growth in the transverse direction is

[
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T-i PLANE T-1 PLANE
T'I

eoreibr 
eareibr

Ir<l MODE I /3r>1

(a) (b)

T- 2 PLANE T- 2 PLANE

T- 2

e-oreibr T-2 epr e-ibr

/3r < 2 MODE 2 Rr>2

(C) (d)

Figure 4.17a. Determination of T for Modes 1 and 2.
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Figure 4.17b. Determination of TI for Modes 3, 4, 5 and 6.
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proper for the leaky wave as was shown by Marcuvitz. To understand the

growth in the transverse direction consiaer a slotted waveguide shown

schematically in Figure 4.18. The guide is fed at the origin, and radiation

takes place in the forward direction. As z is increased less radiation

occurs since the fields are decaying exponentially. The spacing of the

lines in Figure 4.18 is inversely proportional to the power density.

Note that at z = z' the fields increase as x is increased from zero to a

value of x related to the direction of radiation.

The mode 2 solution has exactly the same behavior for 2 as the mode"-2

1 solution has for T_ and consequently mode 2 has solutions which

correspond to waves which are leaky waves. The mode 4 solution corresponds

to waves which are leaky waves since the mode 4 solution behaves for T-3

the same as mode I and mode 2 solutions behave for T_ and T_2 respectively.

However this behavior of the fields is not the case for solutions

curresponding to modes 3, 5., and 6. Each mode has a transverse behavior

which is characte~rized by an inwardly traveling wave. If the:re is an

inwardly traveling wave the field must increase in the z direction. The

fields do not increase since -the z dependence is

B B,r I

e e p 8> 0
I I

This contradiction between the wave traveling inwardly and the fields

decaying in the +z direction make the waves corresponding to the

solutions of modes 3, 5, and 6 physically inadmissable for leaky waves.

If B = B +iB. is chosen as the solution to the determinantal
r I

equation, all of the arguments are the conjugates of the arguments when
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Figure 4.18. Leaky Waveguide
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B = r -Ai1 is chosen as the solution to 1rhe determinant.al equation.r i

The property that ' is it.s conjugate when 3 is its conjugate makes then

discussion of admissable solutions when B (3 :.i.B similar to the above
r I

discussion when r = (-iB I and with the same results,
r M

1) Modes i, 2, and 4 are physically admissable for leaky modes and

2) Modes 2, 5 and 6 are not physically admissable for leaky modes°

If -3 is chosen as the solution to the delerminantal equation, then

attention must be focused on the terms containing li .2 and T . Here,

as before, the discussion of the admissable solution is similar to that

discussion above and with, or course, the identical results. The normalized
1

frequency, k, for which there is experimental data is less than k where I
c4 c4

is the lowest value of k for which there exists a solution corresponding
1

to mode 4, Therefore, only two modes will be of interest for k < k c4

The modes of interest are modes 1 and 2 and will be called predominant

modes.

4.4 Summary

The results of the solution of the determinantal equation have been

presented in this chapter. It was seen That only modes 1, 2 and 4 are
1

physically admissable. Mode 4 exists only for k > k c4' Therefore, for
1

k < k c4 the current will be approximated by solutions from modes I and

2.
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5. SOURCE PROBLEMS

5.1 Introduction

In contrast with the previous chapters that considered only an infinite

tape helix without a source, this chapter is concerned with helices with

a source. The source will be of small extent located al the origin, A

description for the source is

(0 0
E 1 0 (5.1)11 T 4

where ° is much less than one radian. In the limit E could be

taken as

E = b(4m) (5.2)

Not only Will the infinite helix be studied but also a finite helix

symmetrical about the origin.

5.2 An Infinite Helix with a Source

In this section an infinite helix with a source as described in

Equation (5.1) is considered. An equation for the amplitudes of the

7
free modes is found following Sensiper 7 In a range of frequencies

of interest there are two modes. The solution for the relative amplitudes

is shown graphically.

To derive the expression for the amplitudes one first writes the
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assumed electric field Equation (5.1) as a Fourier integral viz,

E1 1 - f e dB ('5.3)

E ý O

since S- sin . is the Fourier transform of The assumed electric

field. The current on the tape is

00f S
1(0) f 1(1) e dB (5,4)

Now E may be calculated from the integral representation in Equation (2.32)

E ( ,2) -(_ !) +. k2  1(. l) 1 e - __ 4, 1
"11 411k2 (a2.p2) I' 2 _J0 a 8€12 R( acos(k

If the two equations for E ll Equation (5.3) and Equation (.2.32) are set

equal to each other and the current and its derivative are replaced in

Equation (2.32) by their Fourier integrals one obtains, after an interchange

of order of integration, an expression containing I(8) viz,

0 sin o 
20 dB e2 +i1- I(B) IB2÷k2[a2cos(4 ~ .1 ]e-ie

f = d B3 2 -21

-0 4.T :(a t p ) _- 0

-ikR

L dI ('5.5)R
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If the integrand is set equal to zero an expression for I(B) is

obtained. Now if the inverse transform of I(8) is taken the result is j

S] •ol e ~ 2 1/2

.E sin o212e-ia-r W 6 e 4¶r f(a2+p )

I(M) - dB (5.6)

2 -ikR0 2 2 2 ( 1l eB f 1 +k2[aos(ý_¢l)4 ] R dl

0

The denominator of the integrand of Equation (5.6) is recognized as being1]

proportional to E for a current I = I -i8 1. The electric field E for11oe 11l

dl[
the exponential current is given by substituting for I and -1 in Equation

dV

(2.32) viz.

-iwE f (B2+k2 a2cos( 4_l) + ] e I-8 e d1

11 2 1/2 f R

41"k (a +p) -0

(5.7)

Now the electric field may also be found from Equation (2.23)

6

-i B --p i - k t 2 A _

i e 2 p l o v e s i n 2 ,,p 2 2 2 A +A - 2 A
4 k sin2  2A.

(5.8)

which was the electric field found in the derivation of the determinant:al
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equation by matching boundary conditions.

If Equations (5.7) and (5.8) are set equal to each other, one may

substitute for the denominator of the inlegrand of Equation (5.6) the

series expression, whose zeros have been found. The expression for [(@)

is

0 si o B1 -1
o k P 2 ps -sd-2

'•sin2 J o-.00 . . .d
2 

d
2 2 A -A -2Ao

2A1( [ ----. - k c tnZ~ , l -'
o n24' 2A J

(5-,9)

Let

D(B) 2A [ -k ctn2 2A (5,10)

The expression D(O) when set equal to zero is the determinantal

equation. The roots of the determinantal equation are poles of the

integrand in Equation (5.9), The integral in Equation (5,9) may be

evaluated by using the residue theorem to find the current in terms of

the free modes. The result is

4'rrE(P k k pe-BJI()_ o •; e 5i)
0d (5,11)

v sin 2  i=1,2 .q D(B)
13=B

i
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where use was made of the fact,

e 2p

0

i 2

for narrow tapes with a source of small extent. The summation in

Equation (5.11) is taken over the two predominant modes.

Let the current on the tape be

-iS1 c -iS c

1M = I oje + a e ] 2 > 0 (5,12)

A calculation for the magnitude of a, lal, was made for a helix with

S= 12.6' and 5 = .15. The results are shown in Figure 5.1. Note that

as the frequency k is increased the relative amplitude of the second

mode is increased.

The complex valued derivatives in Equation (5.11) were evaluated

numerically by taking first an increment in the B direction and finding
r

AD AD.
r +i (5 .l3)

& r
r r

where D = D + D.. Second an increment in the iS. direction was taken
r I i

and the result
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- 0

JAI _I = Il +A12

0- p = 12.60

8= .15

INFINITE HELIX
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.001 I
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Figure 5.1. Relat.iv:e. Amplitude of ibbe Two Mod-s on. an, Infair.te

Helix as a Function of Freque.ncy.
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AD. AD
1 -i (5.14)
1 \

compared to Equation (5.14) to determine the derivative, This is, of

course, doing nothing more than performing the difference quotient along

two convenient rays. The function D(B) is analytic in a region containing

the zero under consideration, and tlB derivative is unique. The only

reason that the difference quotient was evaluated along two different

rays was to have a numerical check on the calculation.

5.3 A Finite Helix with Source
V

5.3.1 Introduction

This section will be concerned with relative amplitudes of the

two predominant current modes that exist on a finite helix, The helix

is symmetrical about the origin - 4 0o< 4 < 4o and is fed at the origin,

The two currents,1 (B1) and 12(82), will be chosen such that each

current will be zero at the ends of the helix, 4 = +4-' This boundary

condition excludes consideration of mode conversion at + = + 4 i.e.,

no energy is taken from mode 1 and placed in mode 2 or conversely

by the end discontinuity.

The currents that satlsfy the boundary condition are

I, = sinh y1 (4o - I4') (5.15)

and

12 = sin B 2(4'- IWI) (5.16)
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where N and (2 are the propagation and phase constants for modes one and

two respectively) which were found by solving the determinantal equation

for an infinite helix with the same pitch angle, tape width and radius as

the finite helix. The total current on the helix is

I = I1 AI2 (5,17)

where A is a complex constant which relates the relative amplitude of the

two modes.

If one had a function of the total current which was stationary with

respect to the current then it would be possible to find the complex

constant A by a variational technique, This is how A is calculated, The

relative amplitude of the two modes is then studied as a function of

frequency for a finite helix of different lengths.

5,3.2 The Variational Expression

A variational expression that is stationary with respect to current

30
for a symmetric helix was found by Tang

The integral representation, Equation (2.31), for the electric field

was found in Chapter 2. Equation (2,31) will be repeated here for

convenience, viz.

____ 1 2  
221 2 -tkR

E k 22 [a 2cos (ý_i)+p1 e-( kR
1 2 2- 2 3 1 f2

El 4rk2 (a4-p) -0
(5.18)
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with

2 12
R [2a sin--] 4. [p(•_•i)] 4. 1

2 2

The above R is linearized so that the kernel. in Equation (5.18) is symmetric 1
inc•- •i i.e. K(c- i) K(I 1 with

2 • - -•s ikR
2 2 2 1/2 2+ k [a COS(-ý )4P R.

4irk (a +p) )2

The approximation for the linearized R is good for large R since &

is compared to p(.lO-P) and is good for very small R since 4 p(P_@l) is

compared with 5.

If Equation (5.18) is written symbolically as E = K I

and if

<A, B> f Alldd

0

where the helix extends from -40 + 0o0 then the stationary function

is the input-impedance

Z. <.IKI (5.19)

in 12 (0)

30
found by Tang

The stationary function, Equation (5.19), is stationary with

respect to current, i.e.,
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SZ.
Zinl 0 (520)

a I

It follows from Equations (5.17) and (5,20) that

in---- 0 (5.21)
6A

If the indicated operation in Equation (5.21) is performed, the result

for the complex constant A is

A = 12 11(0) 2 2A f~(O)~ - (0 (5 .22)

1 () 22 2 (0112

where

J fJ 1(4) I 1) K(4-4 1) d4dc1 (5 23)

0 0

I1(0) sinh y14

and

12(0) sin B 42

To evaluate the complex constant A it is necessary to evaluate the integrals

in Equation (5.23),
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5.3.3 Integration of
_i

The kernel in Equation (5,,23) may be written as

"412a2 /2 -f . k2i(1 G(2 ¢•)

4k 2(a 2 (5°24)

where

22

2 2
f(u) - a cos u 4- p

-ikR
G(u) RR

with

2u 2 -u2
R = [2a sin -] 4 ( . (-)

2 (p) 2

If

k
2  2 -2 11/2

then

id4Ii(c) I() - +k2f( (4-cI G(Q-Pl)dl 1

o- o (5.25)

The inner integral is separated into two integrals, viz.

I
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a i

I
.(41)i + G(c-P )1 (.6

1 1 1 1(-4

I

+f 1) G(ý-ý1)] dl51
0

I

The function of ý inside the braces,} is an even function as is the

current I(4). This simplifies Equation (5.26) to

0
1 

I

i = od41o(§() ij((pl) • - [G(P+I) _ G(•_4 1 ) ] •il
2 

[ij 

(04 . ( 1) k 2[f( 1) G(4ýI) + f(ý_•l) G,(ý_•I)] d•l (5.27)

0
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The first integral in Equation (5.27) may be integrated by parts twice,

once with respect to c and once with respect to i which gives

f dI0 () dI .(i 1
i [G(•+•I) - G(•-4l) ] dc~dcP (5,28)

i

where use has been made of

Ii(co) = I ) 0 and

G(4l) - G (_Pi) = 0

If Equation (5.28) is substituted into Equation (5.27) the result is

dl[G(I+4I) 
- G((.-P )] d~dc1ý ij : - d- l

(5.29)

+ j. ) 1 I(•) k 2 [f( 0+4) G(c+tIý1) +f(ý4 1 ) G(_•l).]d~dý 
1

0 0

It will be reiterated that Equation (5.29) holds only when the following

are true:

1) I '1. are even functions and vanish at o I
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2) R is linearized, i.e., R(P-cI) = R(-I-)o

The integrals in Equation (5.29) are two dimensional integrals and need

to be integrated once analytically to be suitable for numerical computation.

The reason for this is that the integrands are rapidly varying functions

of the variable of integration and numerical integration requires either

a very small step size or a variable step size technique. Either of the

two techniques is prohibitive in the amount of machine time required for

two dimensional integrals.

However, one is indeed fortunate that after a change of variable the

integrals may be integrated analytically once. The resulting one

dimensional integrals are then numerically integrated by a variable step

size technique.

Let

U
(5,,30)

Recall that

dl (cP)

I(c) sinh y( 1 = - Y cosh y

1 1 ~dIQP
12 W) =sin 2(o-I) 2 - -B cosB 2(ýo-ýI)

If the change of variable in Equation (5.30) is made then

I(@) I(1l) = 1 [cosh yl(2o-u) - cosh ylv] (5.31)
1 1 2 y1 (2-u y1v](.
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Ii (2-u) cosh v- sinh (2-u) sinh

1 2. 2

-cosh y2 (20-u) cosh y3v + sinh y2(24 -u) sinh y3v] (5.33)

dlI ( 4) d I 2 ( ) y 1

2 2 [cosh y 3 (2ýo-u) cosh y 2 v - sinh y3(20-u) sinh y2v

+ cosh y2 (2 0-u) cosh "y3 v - sinh -2(2cP-u) sinh y3v] (5.34)

I() M 2(1) 1 os B2v - Cos B2(2 oU (5.35)

d12 ()) d12 Wl) 2 2
d 2-- • d - s[Cos B2 (2ct -U) cos B 2 v] (5.36)

where

Y2+i 2 2

1 2 2
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and

Y. - A1213 2

Since the assumed currents are exponential in form and, of course,

(x+y)= x yhave the property e =e e , the products of the currents and their

derivatives separate into products of functions of the form U(u) V(v),

where U is a function of u alone and V is a function of v alone, This

particular property of the currents permits the two dimensional integrals,

Equation (5.29) to be integrated once analytically.

The integrals, Equation (5.29), are now of the form

1 FI(• 1 F (4-1)I) d~dlP1  (5.37)S ij J= F

2) 1 2
0 0

.1
The Jacobian of the transformation given in Equation (5,30) is - . The

integral in Equation (5.37) may then be written as

21 j f• Fl(u) F2 (v) dudv (5.38)

R
uv

where R is shown in Figure 5.2.
uv
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Suu

Figure 5.2

If the integration with respect to u is to be integrated first, i.e.,

able to be integrated analytically, Equation (5 38) is written as

1 o0 F 2 (v) +F 2 (-v)dv.
J 2 dv F(U)du

0 v
(5,,39)

On the other hand if the integration with respect to v is to be performed

first, Equation (5.38) is written

I F u d u 2cP 2 cP0-uf Fl(u) du F2 (v) dv 4. f F (u) du F2 (v)dv

0 20+u

(5.40)
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If the currents arid their derivatives, Equations (5o,31) through (5,36),

are substituted into Equations (2.39) and (3.40), and the integrations

first are performed, the results for the integrals, Equation (5,.29),

are obtained after considerable analytical integration. The results are

(1 2

f0[Y. - k f(u)] Lu cosh 'Yl (21o-u) -2 (o-u) cosh y1 u]

0

+I Yl2-k f(u)) ]-- G(u) du

2ý

+ f(u)](2c -u) cosh "y (2P -u)

0

22sinh y1 (2o-U)•

+ [1Y -k 2f(u)] 7i G(u) du (5l)

GOu))Vdui(5o41u

SG(U) k k2f(u)] s y3u[y (2 o -u)

1i2 12 y3  2 2 0

sinh [y-3(24o -u)] - sinh y3u

- cosh y2 u -3 03

k2 _sinh •2u

+ [yiB2 +i k f(u) 1 Lsinh cosh [y3(2 o -u)]hi 2 _ 2 0
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sinh P> (20 -u)] - nh y2 U}]
cosh • 3 u du

3 Y2

0i B ik2f ls inh "y3(2ýo-U) cosh [¥(2ýo-U)] (5,42)
+ (u) "•i 2-kf (u) -Y2 "

sinh 'y2(2 4)-u)

B + o kf(u)] cosh r 3 ( 2 )o- U) du

+LY1 82 +ik )Y2

[B2 J 2 + k 2f(u)] 82 2

[B2 -k
2 f(u)] [u Cos B 2(240-u) -2 (4o-U) cos j G(u) du

2-o 2 2 sin B 2(24o -U)

+ f 22 + k f(u)] B2 + [B 2
2 -k 2 f(u)] (2 -u) cos B2 (24o- G(u)du

0( (5.43)

where

2
2

f(u) = a cos u + p

-ikR

G(u) R = [2a sin 4. (pu) 2R22

-Yl+i B,2 ''l-i 2

12 2 2Y3 2
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The integrals are now in a form suitable for numerical evaluation and

hence the complex constant A may be found from Equation (5,22) which

is repeated here for convenience after the numerator and denominator on

the right hand side are multiplied by a constant.

12(0) /i- 1(0)

11(0) sinh

and

1 (0) = sin 32c

12 200=si

5.3,4 Results of the Numerical Integration

The integrals in Equation (5.44) were evaluated using a variable step

size technique and the value of A was determined for helices with a total

of 8, 12, and 16 turns, All helices have a pitch angle ' 12 6 and a

tape width .15.

One is interested in how much of the second mode is launched as

compared to the first mode. For this reason the results for A are not

given, but the values for lai are given, The magnitude

1 o
of a, Ja I, approximately equals the ratio of the amplitude of the first

-2yico

mode, The approximation arises from ignoring the term e as

compared to unity, The approximation is better than 2% on the worst case

and often better than .05%.



132

In Figure 5.3 lal is plotted as a function of frequency for the

three different length helices. it is to be noted as frequency is

increased the general trend is for an increase in second mode. This

functional variation is identical to what was found for the infinite

helix as shown in Figure 2.1.

The oscillations in the amplitude of a may be caused by the variation

of input impedance of the helix. The minimums of Jal occur near values

of k which correspond to values of Br2 that make the helix resonant,

The magnitude of the total current on a helix of 12 turns for two

different frequencies is shown in Figures 5.4 and 5.5, At the lower

frequency, k = .17, the attenuation for the first mode was smaller than

at the higher frequency, k = .29. Consequently, the total current does

not decay as fast at the lower frequency. In addition, the amplitude of

the second mode is less at the lower frequency.' Therefore, the second

mode does not give the pronounced standing wave as at the higher frequency.

Figures 5.6a, 6b, and 6c show that k - 3 diagram in the region of interest

in this chapter.

5.4 Summary

Two source problems were investigated in this chapter, one an infinite

helix and the other a finite helix. Both problems were similar in that the

helices were fed at the origin with sources of small extent, essentially 8 _

sources. In both problems the object was to find the relationship between

the amplitudes of the two predominant modes constituting the current on the

helix. The phase constants determined by solving the determinantal equation

in previous chapters were used in finding the relative amplitudes of the

two modes.

'7
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Figure 5.3. Relat:ive Amplitude of the Two Modes on a Finite
Helix as a Function of Frequency.



134

0

'-4o 4
0 0

0

oo

0

08 00 -

it' -4U



135

-0

r-4

Q)

00

Q)

-00

C-44



136

= 2.6-

.30 - C .335

.28

.26

.24 -Mode I

+

r
.22 -

,20 -

.18 '

.16 1

ý.80 .84 .88 .92 .96 1.00 1.04

' r
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Figure 5.6b. The k - B. diagram for the tape helix near

k c; Modell; P = 12.6° 0, = .335.
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Figure 5.6c. The k - B diagram for the tape helix near

kcl; Moder2; k 12.60., a = .335.
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The relative amplitude of the two modes in the case of the infinite

helix was found by evaluating the contribution made by the leaky wave poles

to the inverse Fourier transform of the source problem. The leaky wave

poles are the solutions to the determinantal equation.

The relative amplitude of the two modes in the case of the finite

helix was found by using a variational formulation to find the relative

amplitude to give the best input impedance in terms of the two current

waves which correspond to solutions of the determinantal equation..

It was found that the second mode increased in amplitude as the

frequency was increased for both problems. In addition, when the helix

was truncated, there was an end effect and the oscillations of the

relative amplitude agree well with the expected variations of the input

impedance for the second mode.



i

140 j

6. COMPARISON WITH EXPERIMENTS

6.1 Marshts Experiment

6.1.1 Introduction

In 1950 Marshl8 reported that he had measured the current distri-

bution of a six turn helix fed against a ground plane, In addition to

measuring the current he was able to empirically fit the results by

assuming two current modes each of which was reflected from the end.

For the empirical results he chose the current as

-.(a1+iB1)z -iB2z (al+iBl)z i+2z
I = e +i ae + be + ce

The real constants a,, B1, and B2 and the complex constants a, b,

and c were chosen by Marsh to fit his measured data. He obtained excellent

agreement.

6.1.2 Phase Constants

The phase constants calculated by solving the determinantal equation

agree well with Marsh's empirically determined phase constants as shown i B
in TABLE II

TABLE I [

a1  81 8B

kMarsh Calculated Marsh Calculated Marsh Calculated

.1488 .0078 0 .681 .69 1.193 1.15

.1734 .0636 .069 .795 .808 1.173 1.175

.2115 .1548 .1065 .969 .875 1.356 1.21.2

I



The calculated phase constants in TABLE I correspond to tape helix

parameters, = 12.60, a = 4.305 cm and 5 = .15a. The empirically deter-

mined phase constants by Marsh correspond to parameters ' = 12.60 and

a = 4.305 cm. The wire diameter is not reported by Marsh and a tape

width was chosen to be approximately equal. to the wire diameter inferred

from a photograph in Marsh's report. For B1 Marsh used B corresponding

to a wave traveling down the wire with the velocity of light.

6.1.3 Amplitude Constants

The solution for the helix fed against the ground plane was not

attempted. However, it is interesting to compare the magnitude of the

amplitude coefficients obtained for: 1) The infinite helix fed at origin;

2) the finite helix fed at the origin, and 3) Marsh's empirical results

for the helix fed against a ground plane. The comparison is shown in

Figure 6.1. Note that, as k is increased, one in general expects the

second mode amplitude to increase relative to the first mode amplitude.

Marsh, in empirically determining the amplitude coefficients, did not

insist on zero current for each mode or total at the end of the helix.

He permitted energy propagation down the helix in mode 2 to be

converted into mode 1 to be reflected. This is reasonable since at the

discontinuity the waves are 'relaunched" and mode 1 is easier to excite

than mode 2 as shown by the calculations of Chapter 5. Since only a

portion of the mode 2 current returns this may permit a larger mode 2

current to be launched and hence a larger relative amplitude, a. In

Chapter 5, where source problems were investigated, each mode current was

forced to be zero at the end of the helix.
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Figure 6.1. Relative amplitude of the two modes compared for
a) infinite helix, b) finite helix and c) Marsh's
empirical work.
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6.1.4 Summary

Marsh was able to empirically fit the measured current distribution

on a six turn helix fed against a ground plane by assuming two current

waves each reflected at the end. The phase wnstants calculated in this

report agree well with Marsh's empi.rically determined phase constants.

In addition the amplitude coefficients calculated in Chapter 5 behave

similarly to Marsh's coefficients,

6.2 Other Experiments

31 12
Both McClelland, on the conical equiangular spiral, and Patton,

on the bifilar helix fed out of phase, have performed experiments which

support the use of the approximation for the current by only the two

modes. The bifilar helix fed out of phase has a determinantal equation

which is related to the determinantal equation for the monofilar helix

studied in this report. The determinantal equation for the bifilar

helix has only the terms corresponding to n odd as coefficients to Dn

as compared to the determinantal equation for the monofilar helix. One

expects similar behavior of the solution near B3 = 2 but certainly differentr

solutions near 3 = 2 since the terms containing T are missing. The
r -2

conical equiangular spiral is the log-periodic version of the bifilar

helix. Both works, McClelland's and Patton's, support the calculations

reported here in the following manner:

1) As the frequency is increased above a value corresponding to

"k cl, the current decays, indicating radiation. The higher k

the more attenuation, indicating 3 increasing as k is increased.

2) As k is increased still further the current has a small

standing wave component occurring indicating that mode 2 is present.
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The foregoing experimental results are exactly what would be predicted

from the solution of the detexnminantal equation and the corresponding study

of the source problem.

I•



145

7. SUMMARY

7.1 Original Work Done

Sensiper formulated and solved the dererminantal equation for the

tape helix treating the phase constant, 3, as a real variable but

Sensiper and Pierce doubted the existence of complex-valued solutions

for the determinantal equation. This present work reports the solution

of the determinantal equation for various values of the parameters of

the tape helix, where the phase constant is complex-valued. The

deteiiminantal equation was interpreted as a complex-valued equation where

the arguments of the IK products are shown to be continuous functions

of k and B. In determining how the various arguments of the IK products

should be interpreted it was found useful to study two simplified equations

which exhibited solutions, in certain regions of B, similar in character

to the solutions for the determinantal equation.

Two source problems were in.estigated, the first. an infinite helix,

the second a finite helix, both fed at the origin. The amplitudes of

the free modes representing the current on the infinite helix were found

7
following Sensiper but with the phase constant, B, as a complex

variable. On the problem of a finite helix a variational technique was

used to find the relative amplitude of the two modes representing -the

current which yields the best input impedance for a current approximated

by two modes which correspond to solutions of the determinantal equation.

30
Tang used the variational technique to find the input impedance of

the helical antenna (finite helix) assuming the current to be the sum of

two components, the first. was sinusoidal and corresponded to waves
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traveling at the velocity of light, the second was also sinusoidal but

with the phase constant twice the value corresponding to phase constant

for a wave traveling at the velocity of light.

The variational technique was used in the present report to find

the relative amplitude of the two assumed modes which were used to

represent the current on the finite helix. The phase constants

corresponding to the assumed modes are the complex-valued solutions

to the determinantal equation.

7.2 Conclusions

This report indicates that it is possible to approximate the

current on a helix with current waves whose complex-valued phase constants

are found solving the determinantal equation. The value and the behavior

of the roots as a function of the helix parameters of the determinantal

equation is just that behavior which causes the corresponding current

to agree with experimental results.

-308
The solution of the determinantal equation for a = 10 an

extremely narrow tape, corresponds to the asymptotic solution obtained

by MittraII for the limiting case where the tape width tends to zero.

As the tape is made wider but still very narrow, e.g., corresponding to

a = 10-30, the phase constant becomes complex valued and in addition

the real part of the phase constant deviates from the line k = sin

representing a wave traveling down the tape with the velocity of light.

The wider the tape the greater is the value of Bi,, the imaginary part

of the phase constant. Also the wider the tape the greater is the

deviation of the real part of the phase constant from the line

corresponding to the velocity of light.
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For the mode 1 solution the imaginary part of the phase constant

increases rapidly as the frequency is increased above k - k

As the pLtch angle, P, is increased the real part of the phase

constant tends toward the line corresponding to the velocity of light.

Also as the pitch angle is incieased the maximum value of the imaginary

part of the phase constant decreases.

The amplitude coefficients calculated in connection with the source

problems permit the calculation of the total current on the helix.

Corresponding to a frequency just above k = k the current is
Ol

predominantly mode 1 type current and shows exponential decay away

from the source, For a higher value of k the current shows the relative

increase of mode 2 type which is typified by a definite standing wave

of current near the reflected end for the liniT.e helix.

7.3 Further work

7.3.1 The Bifilar Helix

The determinantal equation has been derived for the bifilar helix when

the currents are assumed balanced. This determlnantal equation has only

the terms on the right hand side which have form factors, i.e., the even

terms are zero. Although simplified Equation (1), Section 3.2, gives an

insight into the behavior of the solution, a more exact solution might be

found. After one obtains the roots for the infinite bifilar helix, the

source problem could be investigated with the end results the calculation

of patterns. These could be checked against Patton's12 calculated and

measured results.

7.3.2 A Conducting Cylinder Inside the Helix

Following the method similar to that. used in this report., the
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determinantal equation for a concentric conducting cylinder inside

the helix may be obtained. The behavior of the solutions could then

be used to verify the preliminary measurements 12 indicating that

the radius of cylinder has Small effect on the fields outside the

helix.
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